A Model-Driven Realization of AUV Controllers Based on the MDA/MBSE Approach

Ngo Van Hien, Van Thuan Truong, Ngoc Tam Bui

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


This paper introduces a model-driven control realization, which is based on the systems engineering concepts of the model-driven architecture (MDA)/model-based systems engineering (MBSE) approach combined with the real-time UML/SysML, extended/unscented Kalman filter (EKF/UKF) algorithms, and hybrid automata, in order to conveniently deploy controllers of autonomous underwater vehicles (AUVs). This model also creates a real-time communication pattern, which can permit the designed components to be customizable and reusable in new application developments of different AUV types. The paper brings out stepwise adapted AUV dynamics for control that are then combined with the specialization of MDA/MBSE features as follows: the computation independent model (CIM) is defined by the specification of the use-case model together with hybrid automata to gather the requirement analysis for control; the platform-independent model (PIM) is then designed by specializing the real-time UML/SysML's features including main control capsules that depict structures and behaviors of controllers in detail; and the detailed PIM is subsequently converted into the platform-specific model (PSM) by object-oriented platforms to rapidly implement the AUV controller. Based on this proposed model, a horizontal planar trajectory-tracking controller was deployed and tested that permits a miniature AUV possessing a torpedo shape to reach and follow the desired horizontal planar trajectory.

Original languageEnglish
Article number8848776
JournalJournal of Advanced Transportation
Publication statusPublished - 2020

ASJC Scopus subject areas

  • Automotive Engineering
  • Economics and Econometrics
  • Mechanical Engineering
  • Computer Science Applications
  • Strategy and Management


Dive into the research topics of 'A Model-Driven Realization of AUV Controllers Based on the MDA/MBSE Approach'. Together they form a unique fingerprint.

Cite this