TY - GEN
T1 - An analysis of biogas reforming process on Ni/SDC catalyst
AU - Brus, G.
AU - Komatsu, Y.
AU - Kimijima, S.
AU - Szmyd, J. S.
PY - 2010
Y1 - 2010
N2 - The conversion of biogas to electricity presents an attractive niche application for fuel cells. Thus attempts have been made to use biogas as a fuel for high temperature fuel cell systems such as SOFC. Biogas can be converted to hydrogen-rich fuel in a reforming process. For hydrocarbon-based fuel, three types of fuel conversion can be considered in reforming reactions: an external reforming system, an indirect internal reforming system and a direct internal reforming system. High-temperature SOFC eliminates the need for an expensive external reforming system. The possibility of using internal reforming is one of the characteristics of high temperature fuel cells like SOFC. However, for hightemperature operation, thermal management of the SOFC system becomes an important issue. To properly carry out thermal management, both detailed modeling and numerical analyses of the phenomena occurring inside the SOFC system is required. In the present work, the process of reforming biogas on an Ni/SDC catalyst has been numerically and experimentally investigated. Measurements including different thermal boundary conditions, steam-to-carbon ratios and several different fuel compositions were taken. A numerical model containing methane/steam reforming reaction, dry reforming reaction and shift reaction has been proposed to predict the gas mixture composition at the outlet of the reformer. The results of the numerical computation were compared with experimental data and good agreement has been found. The results indicate the importance of combined, numerical and experimental studies in the design of SOFC reformers. The combined approach used leads to the successful prediction of the outlet gas composition for different modelling conditions.
AB - The conversion of biogas to electricity presents an attractive niche application for fuel cells. Thus attempts have been made to use biogas as a fuel for high temperature fuel cell systems such as SOFC. Biogas can be converted to hydrogen-rich fuel in a reforming process. For hydrocarbon-based fuel, three types of fuel conversion can be considered in reforming reactions: an external reforming system, an indirect internal reforming system and a direct internal reforming system. High-temperature SOFC eliminates the need for an expensive external reforming system. The possibility of using internal reforming is one of the characteristics of high temperature fuel cells like SOFC. However, for hightemperature operation, thermal management of the SOFC system becomes an important issue. To properly carry out thermal management, both detailed modeling and numerical analyses of the phenomena occurring inside the SOFC system is required. In the present work, the process of reforming biogas on an Ni/SDC catalyst has been numerically and experimentally investigated. Measurements including different thermal boundary conditions, steam-to-carbon ratios and several different fuel compositions were taken. A numerical model containing methane/steam reforming reaction, dry reforming reaction and shift reaction has been proposed to predict the gas mixture composition at the outlet of the reformer. The results of the numerical computation were compared with experimental data and good agreement has been found. The results indicate the importance of combined, numerical and experimental studies in the design of SOFC reformers. The combined approach used leads to the successful prediction of the outlet gas composition for different modelling conditions.
KW - Biogas reforming
KW - Dry reforming
KW - Methane/steam reforming
KW - Ni/SDC catalyst
UR - http://www.scopus.com/inward/record.url?scp=84896113980&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84896113980&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84896113980
SN - 9781456303112
T3 - Proceedings of the 23rd International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems, ECOS 2010
SP - 207
EP - 215
BT - Biomass and Renewable
PB - Aabo Akademi University
T2 - 23rd International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems, ECOS 2010
Y2 - 14 June 2010 through 17 June 2010
ER -