Abstract
Tetrapyrazinoporphyrazine substituted at its periphery with eight antioxidant 3,5-di-t-butyl-4-hydroxyphenyl groups behaves as a turn-on fluorescent sensor for fluoride anions. Conversely, the precursor antioxidant-substituted 1,2-phthalonitrile was found to act in turn-off mode suggesting that the origin of the phenomenon lies at the phenolate-substituted 1,4-pyrazinyl moiety.
Original language | English |
---|---|
Pages (from-to) | 3951-3953 |
Number of pages | 3 |
Journal | Chemical Communications |
Volume | 48 |
Issue number | 33 |
DOIs | |
Publication status | Published - 2012 Mar 26 |
Externally published | Yes |
ASJC Scopus subject areas
- Catalysis
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Chemistry(all)
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry