TY - JOUR
T1 - Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells
AU - Zheng, Kun
AU - Świerczek, Konrad
AU - Bratek, Joanna
AU - Klimkowicz, Alicja
N1 - Funding Information:
The project was funded by the National Science Centre Poland (NCN) on the basis of the decision number DEC-2011/03/N/ST5/04785 .
PY - 2014/9/1
Y1 - 2014/9/1
N2 - In this work selected cation-ordered perovskite-type anode and cathode materials were investigated in terms of their possible application in intermediate temperature solid oxide fuel cells (IT-SOFC). Their phase composition, oxygen content, chemical diffusion coefficient of oxygen D and surface exchange coefficient K, chemical stability in relation to ceria electrolyte, and stability of the anode material in reducing atmosphere were studied. It was found that Sr0.5Ba1.5CoMoO 6 - δ anode material exhibits Fm-3m symmetry with B-site rock salt-type cation ordering, while YBaCo2O5 + δ cathode material possesses P4/mmm space group with A-site layered-type cation ordering. In the case of SmBa0.5Sr0.5Co 1.5Fe0.5O5 + δ compound, partial (> 70 wt.%) A-site layer-type ordering was observed. Electrical conductivity σ of Sr0.5Ba1.5CoMoO6 - δ anode material is much lower (< 0.1 S·cm- 1), as compared to the studied cathode materials, for which σ > 100 S·cm- 1 in 600-800 °C temperature range was measured. However, in reducing conditions, conductivity of Sr0.5Ba1.5CoMoO6 - δ is significantly enhanced (~ 0.5 S·cm- 1). Chemical stability studies at 1000°C revealed that YBaCo2O5 + δ reacts with Ce0.8Gd0.2O1.9, while SmBa 0.5Sr0.5Co1.5Fe0.5O 5 + δ remains stable. In the case of Sr0.5Ba 1.5CoMoO6 - δ compound, long time annealing in reducing atmosphere of 5 vol.% H2 in Ar at 800°C caused decomposition of the material. Despite poor stability of the anode material in reducing conditions, relatively good performance of constructed H2 | Sr0.5Ba1.5CoMoO6 - δ | Ce 0.8Gd0.2O1.9 | SmBa0.5Sr 0.5Co1.5Fe0.5O5 + δ IT-SOFCs was recorded.
AB - In this work selected cation-ordered perovskite-type anode and cathode materials were investigated in terms of their possible application in intermediate temperature solid oxide fuel cells (IT-SOFC). Their phase composition, oxygen content, chemical diffusion coefficient of oxygen D and surface exchange coefficient K, chemical stability in relation to ceria electrolyte, and stability of the anode material in reducing atmosphere were studied. It was found that Sr0.5Ba1.5CoMoO 6 - δ anode material exhibits Fm-3m symmetry with B-site rock salt-type cation ordering, while YBaCo2O5 + δ cathode material possesses P4/mmm space group with A-site layered-type cation ordering. In the case of SmBa0.5Sr0.5Co 1.5Fe0.5O5 + δ compound, partial (> 70 wt.%) A-site layer-type ordering was observed. Electrical conductivity σ of Sr0.5Ba1.5CoMoO6 - δ anode material is much lower (< 0.1 S·cm- 1), as compared to the studied cathode materials, for which σ > 100 S·cm- 1 in 600-800 °C temperature range was measured. However, in reducing conditions, conductivity of Sr0.5Ba1.5CoMoO6 - δ is significantly enhanced (~ 0.5 S·cm- 1). Chemical stability studies at 1000°C revealed that YBaCo2O5 + δ reacts with Ce0.8Gd0.2O1.9, while SmBa 0.5Sr0.5Co1.5Fe0.5O 5 + δ remains stable. In the case of Sr0.5Ba 1.5CoMoO6 - δ compound, long time annealing in reducing atmosphere of 5 vol.% H2 in Ar at 800°C caused decomposition of the material. Despite poor stability of the anode material in reducing conditions, relatively good performance of constructed H2 | Sr0.5Ba1.5CoMoO6 - δ | Ce 0.8Gd0.2O1.9 | SmBa0.5Sr 0.5Co1.5Fe0.5O5 + δ IT-SOFCs was recorded.
KW - Cation ordering
KW - Double perovskite
KW - Mixed ionic-electronic conductivity
KW - Oxygen diffusion
KW - Oxygen nonstoichiometry
KW - SOFC
UR - http://www.scopus.com/inward/record.url?scp=84903279141&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903279141&partnerID=8YFLogxK
U2 - 10.1016/j.ssi.2013.11.009
DO - 10.1016/j.ssi.2013.11.009
M3 - Article
AN - SCOPUS:84903279141
SN - 0167-2738
VL - 262
SP - 354
EP - 358
JO - Solid State Ionics
JF - Solid State Ionics
ER -