Compressed sensing MRI using double sparsity with additional training images

Chenmin Tang, Norihito Inamuro, Takashi Ijiri, Akira Hirabayashi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

The compressed sensing using dictionary learning has led to state-of-the-art results for magnetic resonance imaging (MRI) reconstruction from highly under-sampled measurements. Dictionary learning had been considered time-consuming especially when the patch size or the number of training patches is large. Recently, double sparsity model and online dictionary learning algorithm were proposed to obtain dictionaries with much less computational time. In this paper, we propose an efficient MRI reconstruction method by adopting the double sparsity model with the online dictionary learning method. Besides, for better reconstruction, we use separately prepared fully-sampled MRI images to train dictionaries. We compare results of the proposed technique to traditional offline methods with and without double sparsity model. Our simulation results show that the proposed technique is approximately twice faster than the traditional methods while maintaining the same reconstruction quality. Furthermore, our technique performed even better for lower sampling rate.

Original languageEnglish
Title of host publication2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages801-805
Number of pages5
ISBN (Electronic)9781509041176
DOIs
Publication statusPublished - 2017 Jun 16
Externally publishedYes
Event2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, United States
Duration: 2017 Mar 52017 Mar 9

Other

Other2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
Country/TerritoryUnited States
CityNew Orleans
Period17/3/517/3/9

Keywords

  • compressed sensing
  • double sparsity model
  • MRI
  • online dictionary learning

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Compressed sensing MRI using double sparsity with additional training images'. Together they form a unique fingerprint.

Cite this