Abstract
The compressed sensing using dictionary learning has led to state-of-the-art results for magnetic resonance imaging (MRI) reconstruction from highly under-sampled measurements. Dictionary learning had been considered time-consuming especially when the patch size or the number of training patches is large. Recently, double sparsity model and online dictionary learning algorithm were proposed to obtain dictionaries with much less computational time. In this paper, we propose an efficient MRI reconstruction method by adopting the double sparsity model with the online dictionary learning method. Besides, for better reconstruction, we use separately prepared fully-sampled MRI images to train dictionaries. We compare results of the proposed technique to traditional offline methods with and without double sparsity model. Our simulation results show that the proposed technique is approximately twice faster than the traditional methods while maintaining the same reconstruction quality. Furthermore, our technique performed even better for lower sampling rate.
Original language | English |
---|---|
Title of host publication | 2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 801-805 |
Number of pages | 5 |
ISBN (Electronic) | 9781509041176 |
DOIs | |
Publication status | Published - 2017 Jun 16 |
Externally published | Yes |
Event | 2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, United States Duration: 2017 Mar 5 → 2017 Mar 9 |
Other
Other | 2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 17/3/5 → 17/3/9 |
Keywords
- compressed sensing
- double sparsity model
- MRI
- online dictionary learning
ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering