Abstract
Let D(a,N) = min{nk: a N = Σ1k 1 ni, n1 < n2 < ... < nk, ni ε{lunate} Z0}, where the minimum ranges over all expansions of a N, and let D(N) = max{D(a,N): 1 ≤ a < N}. Then D(N) N ≤ (logN) 3 2+ε{lunate}, where ε{lunate} →0 as N → ∞, improving the result of M.N. Bleicher and P. Erdös.
Original language | English |
---|---|
Pages (from-to) | 258-271 |
Number of pages | 14 |
Journal | Journal of Number Theory |
Volume | 28 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1988 Mar |
Externally published | Yes |
ASJC Scopus subject areas
- Algebra and Number Theory