Abstract
Domain patterns of magnetic flux penetrated in YBa2Cu3O7-δ superconductors have been observed by means of a high-resolution Faraday technique. The experimental conditions for observing domain patterns with the high-resolution Faraday effect are discussed. Flux-density profiles and the related flux-density gradients were determined from an analysis of the domain patterns. An analysis of the measured flux-density gradients in single-crystals shows that twin-boundaries are not the strongest acting pinning mechanism at low temperatures. Our results support the assumption that intrinsic pinning determines the flux-density gradients and governs the critical currents. It is shown that the flux-density gradients in grains of the sintered specimens are larger than in single-crystals. The resulting thirty times greater pinning forces are measured both magneto-optically and with a SQUID-magnetometer. This behaviour may be explained by superimposed extrinsic pinning effects such as grain-boundaries.
Original language | English |
---|---|
Pages (from-to) | 36-48 |
Number of pages | 13 |
Journal | Physica C: Superconductivity and its applications |
Volume | 166 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - 1990 Mar 1 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering