Effects of carbon incorporation on doping state of YBa2Cu 3Oy

A. Yamamoto, K. Hirose, Y. Itoh, T. Kakeshita, S. Tajima

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Effects of carbon incorporation on the doping state of YBa 2Cu3Oy (Y-123) were investigated. Quantitative carbon analysis revealed that carbon could be introduced into Y-123 from both the precursor and the sintering gas. Nearly carbon-free (<200 ppm) samples were prepared from a vacuum-treated precursor by sintered at 900 °C and cooling with 20°C/min in flowing oxygen gas. The lower Tc (=88 K) and higher oxygen content (y = 6.98) strongly suggested the overdoping state, which was supported by the temperature dependence of resisitivity and thermoelectric power. The nuclear quadrapole resonance spectra and the Raman scattering spectra indicated that there was almost no oxygen defect in the Cu-O chain in these samples. On the other hand, in the same cooling condition, the samples sintered in air stayed at optimal doping level with Tc = 93 K, and the intentionally carbon-doped sample was in the underdoping state. It is revealed that about 60% of incorporated carbon was substituted for Cu at the chain site in the form of CO32+, and the rest remains at the grain boundary as carbonate impurities. Such incorporation affected the oxygen absorption process in Y-123. It turned out that the oxygen content in Y-123 cannot be controlled only by the annealing temperature and the oxygen partial pressure but also by the incorporated carbon concentration.

Original languageEnglish
Pages (from-to)1-9
Number of pages9
JournalPhysica C: Superconductivity and its applications
Volume421
Issue number1-4
DOIs
Publication statusPublished - 2005 May 1

Keywords

  • Carbon incorporation
  • Overdoped state
  • Residual carbon concentration
  • Y-123

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Effects of carbon incorporation on doping state of YBa2Cu 3Oy'. Together they form a unique fingerprint.

Cite this