Abstract
The creep properties of a Sn-Ag-Cu micro solder joint with a solder ball with 500 μm were investigated by a multi-temperature stress relaxation test performed using a specimen at three temperatures (298, 348, and 398 K). The stress exponents in Norton's law were 8 at 398 K, 8.8 at 348 K, and 9 at 298 K, and the activation energies were found to be 39 kJ/mol in the high-stress region and 80 kJ/mol in the low-stress region. The stress exponent in Norton's law for a micro solder joint was lower than that for a large-scale specimen, which resulted in more coarsened intermetallics in the microstructure than in the large-scale specimen. The activation energies for the micro solder joint were almost equal to those for the large-scale specimen in the high- and low-stress regions. These results reflect the microstructure of the micro solder joint, and the creep constitutive equation for the Sn-Ag-Cu joint could be derived by the multi-temperature stress relaxation test proposed in this study.
Original language | English |
---|---|
Pages (from-to) | 1435-1440 |
Number of pages | 6 |
Journal | Microelectronics Reliability |
Volume | 52 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2012 Jul 1 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Safety, Risk, Reliability and Quality
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Electrical and Electronic Engineering