Finite-size scaling analysis of pseudocritical region in two-dimensional continuous-spin systems

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)


At low temperatures, the two-dimensional continuous-spin systems exhibit large correlation lengths. Some of them show the Berezinskii-Kosterlitz-Thouless-like transitions, and some others show pseudocritical behaviors for which correlation lengths are extremely large but finite. To distinguish pseudo and genuine critical behaviors, it is important to understand the nature of spin-spin correlations and topological defects at low temperatures in continuous-spin systems. In this paper, I develop a finite-size scaling analysis which is suitable for distinguishing the critical behavior and its applications to the two-dimensional XY, Heisenberg, and RP2 models.

Original languageEnglish
Article number032109
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Issue number3
Publication statusPublished - 2014 Sept 10

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics


Dive into the research topics of 'Finite-size scaling analysis of pseudocritical region in two-dimensional continuous-spin systems'. Together they form a unique fingerprint.

Cite this