Heat flux extracted from steel plate with iron oxide scale by water boiling

Masahiro Susa, Yuto Ohsugi, Rie Endo, Mitsutoshi Ueda

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A new method has been developed to measure heat flux extracted from steel surface with iron oxide scale using the mass change of water and the standard enthalpy of evaporation for water at 100ºC. The apparatus was basically composed of a furnace, an electronic balance and a video camera. Samples used were ultra-low carbon steel plates, which were oxidised in air at 850ºC in the furnace so as to have iron oxide scale (mainly FeO) with desired thicknesses (40 - 103 m), and then were moved onto the electronic balance. About 3 g of water was dropped onto the sample, and the mass change of water was measured by the balance and the temperature change inside the sample measured by a thermocouple. In addition, boiling behaviour of water was recorded by the video camera. The mass and temperature changes well corresponded to the video image. The quench points for the samples with scale 40, 58, 77 and 103 m thick were 131, 167, 121 and 182ºC, respectively, and the respective heat fluxes just before quench were 31, 35, 33 and 43 kWm -2 . It seems that there are no clear effects of scale thickness on the quench point and the heat flux just before quench. Assuming a quasi-steady state, Fourier's law has been applied to estimate the thickness of water vapour film during film boiling; as a result, it is found that the thickness decreases from ca. 100 m to ca. 20 m on cooling. These thicknesses are comparable to previously-reported results by direct observation, which suggests that the present estimation is not so unreasonable. Estimation of temperature distribution in the sample suggests that thermal conduction in the water vapour film determines the total heat transfer; thus, there would be no clear effects of scale thickness on the quench point and the heat flux just before quench.

Original languageEnglish
Title of host publicationICS 2018 - 7th International Congress on Science and Technology of Steelmaking
Subtitle of host publicationThe Challenge of Industry 4.0
PublisherAssociazione Italiana di Metallurgia
ISBN (Electronic)9788898990146
Publication statusPublished - 2018
Externally publishedYes
Event7th International Congress on Science and Technology of Steelmaking, ICS 2018 - Venice, Italy
Duration: 2018 Jun 132018 Jun 15

Publication series

NameICS 2018 - 7th International Congress on Science and Technology of Steelmaking: The Challenge of Industry 4.0

Conference

Conference7th International Congress on Science and Technology of Steelmaking, ICS 2018
Country/TerritoryItaly
CityVenice
Period18/6/1318/6/15

Keywords

  • Droplet Film Boiling
  • Evaporation Rate Of Water
  • Extracted Heat Flux
  • Iron Oxide Scale
  • Vapour Film Thickness
  • Water Cooling Process

ASJC Scopus subject areas

  • Metals and Alloys

Fingerprint

Dive into the research topics of 'Heat flux extracted from steel plate with iron oxide scale by water boiling'. Together they form a unique fingerprint.

Cite this