Lamb wave generation using nanosecond laser ablation to detect damage

Naoki Hosoya, Ryosuke Umino, Atsushi Kanda, Itsuro Kajiwara, Atsushi Yoshinaga

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)

Abstract

This paper proposes a non-contact damage detection method based on Lamb waves generated by laser ablation (LA). Previously, Lamb waves generated by contact-type sensors such as acoustic emission or piezoelectric zirconate titanate devices have been studied to detect damage. Lamb wave generation systems with embedded contact-type excitation devices to objective structures to be inspected may quickly realize large-area damage detection on a huge object such as an aircraft. However, replacing contact-type devices with non-contact devices in Lamb wave generation systems, the systems will have sufficient potential to excite under the specific conditions such as submerged target structures in liquid and high-temperature substances. The LA-generated Lamb waves that have amplitudes several hundred times larger than those generated by conventional laser-thermoelastically generated Lamb waves are of advantage from the viewpoint of the signal-to-noise ratio in the measurements. When the laser fluence reaches 1012–1014W/m2, which is greater than that for laser-thermoelastic regime, a LA regime is induced. The amplitudes of the LA-generated Lamb waves might be higher than those of the laser-thermoelastically generated Lamb waves; this is within the scope of the assumption. Since the LA process entails a number of nonlinear processes such as melting, vaporization, and sublimation, it is important to confirm that LA could generate a Lamb wave and its mode. In this paper, Lamb waves that contain broadband frequency elements of more than several hundred kHz are generated by non-contact impulse excitation using LA, which is common in vibration tests in the high-frequency range, laser peening, propulsion of micro-aircraft, bolt loosening diagnosis, etc. The present method is evaluated by comparing the measured and calculated propagation phase and group velocities of the Lamb waves. Furthermore, the feasibility of our approach is demonstrated by non-contact damage detection against an aluminum alloy 2024 plate with a crack.

Original languageEnglish
Pages (from-to)5842-5853
Number of pages12
JournalJVC/Journal of Vibration and Control
Volume24
Issue number24
DOIs
Publication statusPublished - 2018 Dec 1

Keywords

  • Lamb wave
  • Laser ablation
  • damage detection
  • non-contact laser excitation
  • shock wave

ASJC Scopus subject areas

  • Automotive Engineering
  • Materials Science(all)
  • Aerospace Engineering
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Lamb wave generation using nanosecond laser ablation to detect damage'. Together they form a unique fingerprint.

Cite this