Abstract
This study is intended to be the basis for developing more advanced strategy of finite element (FE) modeling for low velocity impact (LVI) simulation. In this study, the induction of delamination by matrix crack was numerically observed by microscopic analysis of a representative unit cell (RUC) model. The RUC model implements intralaminar and interlaminar cohesive elements for describing matrix crack and delamination, respectively. The induction under various situations were appropriately observed by localization analyses; implement periodic boundary conditions on the RUC model, and apply macroscopic strain and curvature predicted by LVI simulation. Periodic boundary conditions were formulated based on the “key degrees of freedom” method in order to apply macroscopic quantities to the RUC model efficiently. Intralaminar cohesive elements were degraded for reproducing matrix crack in the LVI simulation prior to the localization analysis. Matrix crack and delamination predicted by the analyses were qualitatively in good agreement with those in the impacted specimen observed by X-ray CT. Therefore, it can be expected that the interaction between matrix crack and delamination will be derived numerically.
Original language | English |
---|---|
Title of host publication | 33rd Technical Conference of the American Society for Composites 2018 |
Publisher | DEStech Publications Inc. |
Pages | 12-28 |
Number of pages | 17 |
Volume | 1 |
ISBN (Electronic) | 9781510872073 |
Publication status | Published - 2018 Jan 1 |
Event | 33rd Technical Conference of the American Society for Composites 2018 - Seattle, United States Duration: 2018 Sept 24 → 2018 Sept 27 |
Other
Other | 33rd Technical Conference of the American Society for Composites 2018 |
---|---|
Country/Territory | United States |
City | Seattle |
Period | 18/9/24 → 18/9/27 |
ASJC Scopus subject areas
- Mechanics of Materials
- Surfaces, Coatings and Films
- Metals and Alloys