TY - JOUR
T1 - Magnetic ground state of pyrochlore oxides close to metal-insulator boundary probed by muon spin rotation
AU - Miyazaki, M.
AU - Kadono, R.
AU - Satoh, K. H.
AU - Hiraishi, M.
AU - Takeshita, S.
AU - Koda, A.
AU - Yamamoto, A.
AU - Takagi, H.
PY - 2010/9/8
Y1 - 2010/9/8
N2 - The magnetism of ruthenium pyrochlore oxides A2Ru 2O7 (A=Hg, Cd, and Ca), whose electronic properties within a localized ion picture are characterized by nondegenerate t2g orbitals (Ru5+, 4 d3) and thereby subjected to geometrical frustration, has been investigated by the muon spin rotation/relaxation (μSR) technique. The A cation (mostly divalent) was varied to examine the effect of covalency (Hg>Cd>Ca) on the electronic property of the oxides. In a sample with A=Hg, which exhibits a clear metal-insulator (MI) transition below ∼100K (associated with a weak structural transition), a nearly commensurate magnetic order is observed to develop in accordance with MI transition. Meanwhile, in the case of A=Cd, where the MI transition is suppressed to the level of small anomaly in the resistivity, the local-field distribution probed by muons indicates emergence of a certain magnetic inhomogeneity below ∼30K. Moreover, in Ca2Ru2O7, which remains metallic, highly inhomogeneous local magnetism is found below ∼25K; this magnetism arises from randomly oriented Ru moments and thus is described as a "frozen spin-liquid" state. The systematic trend of increasing randomness and itinerant character with decreasing covalency suggests a close relationship between the two characters. To understand the effect of orbital degeneracy and associated Jahn-Teller instability, we examine a tetravalent ruthenium pyrochlore, Tl2Ru2O7 (Ru4+, 4 d 4). The result of μSR indicates a nonmagnetic ground state that is consistent with the formation of the Haldane chains suggested by the neutron-diffraction experiment.
AB - The magnetism of ruthenium pyrochlore oxides A2Ru 2O7 (A=Hg, Cd, and Ca), whose electronic properties within a localized ion picture are characterized by nondegenerate t2g orbitals (Ru5+, 4 d3) and thereby subjected to geometrical frustration, has been investigated by the muon spin rotation/relaxation (μSR) technique. The A cation (mostly divalent) was varied to examine the effect of covalency (Hg>Cd>Ca) on the electronic property of the oxides. In a sample with A=Hg, which exhibits a clear metal-insulator (MI) transition below ∼100K (associated with a weak structural transition), a nearly commensurate magnetic order is observed to develop in accordance with MI transition. Meanwhile, in the case of A=Cd, where the MI transition is suppressed to the level of small anomaly in the resistivity, the local-field distribution probed by muons indicates emergence of a certain magnetic inhomogeneity below ∼30K. Moreover, in Ca2Ru2O7, which remains metallic, highly inhomogeneous local magnetism is found below ∼25K; this magnetism arises from randomly oriented Ru moments and thus is described as a "frozen spin-liquid" state. The systematic trend of increasing randomness and itinerant character with decreasing covalency suggests a close relationship between the two characters. To understand the effect of orbital degeneracy and associated Jahn-Teller instability, we examine a tetravalent ruthenium pyrochlore, Tl2Ru2O7 (Ru4+, 4 d 4). The result of μSR indicates a nonmagnetic ground state that is consistent with the formation of the Haldane chains suggested by the neutron-diffraction experiment.
UR - http://www.scopus.com/inward/record.url?scp=77957569819&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957569819&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.82.094413
DO - 10.1103/PhysRevB.82.094413
M3 - Article
AN - SCOPUS:77957569819
SN - 1098-0121
VL - 82
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 9
M1 - 094413
ER -