Abstract
Rehabilitation robots may help the patient improve their recovery by supporting them to perform repetitive, systematic training sessions. Safety and comfortable feeling of the patients who training with robots is an important issue in not only the steady state but also the transient process. In this research, the trajectory tracking control problems of a two-degrees of freedom (2-DOF) robotic orthosis is discussed. The robotic orthosis is powered by pneumatic artificial muscles (PAMs) in an antagonistic configuration. based on a mathematical model, a modified computed torque control scheme is employed to enhance the tracking performance. The effectiveness of the proposed control strategy is verified by the experiments with the participation of different subjects.
Original language | English |
---|---|
Title of host publication | 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1719-1722 |
Number of pages | 4 |
Volume | 2018-July |
ISBN (Electronic) | 9781538636466 |
DOIs | |
Publication status | Published - 2018 Oct 26 |
Event | 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 - Honolulu, United States Duration: 2018 Jul 18 → 2018 Jul 21 |
Other
Other | 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 |
---|---|
Country/Territory | United States |
City | Honolulu |
Period | 18/7/18 → 18/7/21 |
Keywords
- bi-articular muscle.
- computed torque control
- Gait training device
- pneumatic artificial muscle
- robot orthosis
ASJC Scopus subject areas
- Signal Processing
- Biomedical Engineering
- Computer Vision and Pattern Recognition
- Health Informatics