TY - GEN
T1 - On-chip high speed microrobot made of Ni-Si composite structure with three-dimensionally patterned surface
AU - Hagiwara, M.
AU - Kawahara, T.
AU - Iijima, T.
AU - Masuda, T.
AU - Yamanishi, Y.
AU - Arai, F.
PY - 2012/7/6
Y1 - 2012/7/6
N2 - This paper presents the high speed microrobot actuation driven by permanent magnet in a microfluidic chip. The comprehensive analysis of fluid force, the optimum design and its fabrication was conducted to reduce the fluid force on the magnetically driven microrobot by attaching riblet shape on the microrobot. The Ni and Si composite fabrication was employed to form the optimum riblet shape on the Ni based microrobot by anisotropic Si wet etching and deep reactive ion etching. The evaluation experiments show the microrobot can actuate up to 100 Hz, which is 10 times higher than the original microrobot. In addition, since the microrobot was covered by Si, which is bio-compatible, it can be applied to cell manipulation without harm.
AB - This paper presents the high speed microrobot actuation driven by permanent magnet in a microfluidic chip. The comprehensive analysis of fluid force, the optimum design and its fabrication was conducted to reduce the fluid force on the magnetically driven microrobot by attaching riblet shape on the microrobot. The Ni and Si composite fabrication was employed to form the optimum riblet shape on the Ni based microrobot by anisotropic Si wet etching and deep reactive ion etching. The evaluation experiments show the microrobot can actuate up to 100 Hz, which is 10 times higher than the original microrobot. In addition, since the microrobot was covered by Si, which is bio-compatible, it can be applied to cell manipulation without harm.
UR - http://www.scopus.com/inward/record.url?scp=84863334290&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863334290&partnerID=8YFLogxK
U2 - 10.1109/MHS.2011.6102169
DO - 10.1109/MHS.2011.6102169
M3 - Conference contribution
AN - SCOPUS:84863334290
SN - 9781457713613
T3 - 2011 Int. Symp. on Micro-NanoMechatronics and Human Science, Symp. on "COE for Education and Research of Micro-Nano Mechatronics", Symposium on "Hyper Bio Assembler for 3D Cellular System Innovation"
SP - 108
EP - 112
BT - 2011 Int. Symp. on Micro-NanoMechatronics and Human Science, Symp. on "COE for Education and Research of Micro-Nano Mechatronics", Symposium on "Hyper Bio Assembler for 3D Cellular System Innovation"
T2 - 22nd Annual Symp. on Micro-Nano Mechatronics and Human Science, MHS 2011, Held Jointly with the Symp. on COE for Education and Research of Micro-Nano Mechatronics, Micro-Nano GCOE 2011, Symp. on Hyper Bio Assembler for 3D Cellular System Innovation
Y2 - 6 November 2011 through 9 November 2011
ER -