Rice straw as a natural sorbent in a filter system as an approach to bioremediate diesel pollution

Siti Hajar Taufik, Siti Aqlima Ahmad, Nur Nadhirah Zakaria, Noor Azmi Shaharuddin, Alyza Azzura Azmi, Farah Eryssa Khalid, Faradina Merican, Peter Convey, Azham Zulkharnain, Khalilah Abdul Khalil

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


Rice straw, an agricultural waste product generated in huge quantities worldwide, is utilized to remediate diesel pollution as it possesses excellent characteristics as a natural sorbent. This study aimed to optimize factors that significantly influence the sorption capacity and the efficiency of oil absorption from diesel-polluted seawater by rice straw (RS). Spectroscopic analysis by attenuated total reflectance infrared (ATR-IR) spectroscopy and surface morphology characterization by variable pressure scanning electron microscopy (VPSEM) and energy-dispersive X-ray microanalysis (EDX) were carried out in order to understand the sorbent capability. Optimization of the factors of temperature pre-treatment of RS (90, 100, 110, 120, 130 or 140C), time of heating (10, 20, 30, 40, 50, 60 or 70 min), packing density (0.08, 0.10, 0.12, 0.14 or 0.16 g cm−3 ) and oil concentration (5, 10, 15, 20 or 25% (v/v)) was carried out using the conventional one-factor-at-a-time (OFAT) approach. To eliminate any non-significant factors, a Plackett–Burman design (PBD) in the response surface methodology (RSM) was used. A central composite design (CCD) was used to identify the presence of significant interactions between factors. The quadratic model produced provided a very good fit to the data (R2 = 0.9652). The optimized conditions generated from the CCD were 120C, 10 min, 0.148 g cm−3 and 25% (v/v), and these conditions enhanced oil sorption capacity from 19.6 (OFAT) to 26 mL of diesel oil, a finding verified experimentally. This study provides an improved understanding of the use of a natural sorbent as an approach to remediate diesel pollution.

Original languageEnglish
Article number3317
JournalWater (Switzerland)
Issue number23
Publication statusPublished - 2021 Dec 1


  • Morphology
  • Oil absorption efficiency
  • One-factor-at-a-time (OFAT)
  • Response surface methodology (RSM)
  • Rice straw
  • Sorption capacity
  • Spectroscopic analysis

ASJC Scopus subject areas

  • Water Science and Technology
  • Geography, Planning and Development
  • Aquatic Science
  • Biochemistry


Dive into the research topics of 'Rice straw as a natural sorbent in a filter system as an approach to bioremediate diesel pollution'. Together they form a unique fingerprint.

Cite this