TY - JOUR
T1 - Rice straw as a natural sorbent in a filter system as an approach to bioremediate diesel pollution
AU - Taufik, Siti Hajar
AU - Ahmad, Siti Aqlima
AU - Zakaria, Nur Nadhirah
AU - Shaharuddin, Noor Azmi
AU - Azmi, Alyza Azzura
AU - Khalid, Farah Eryssa
AU - Merican, Faradina
AU - Convey, Peter
AU - Zulkharnain, Azham
AU - Khalil, Khalilah Abdul
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/12/1
Y1 - 2021/12/1
N2 - Rice straw, an agricultural waste product generated in huge quantities worldwide, is utilized to remediate diesel pollution as it possesses excellent characteristics as a natural sorbent. This study aimed to optimize factors that significantly influence the sorption capacity and the efficiency of oil absorption from diesel-polluted seawater by rice straw (RS). Spectroscopic analysis by attenuated total reflectance infrared (ATR-IR) spectroscopy and surface morphology characterization by variable pressure scanning electron microscopy (VPSEM) and energy-dispersive X-ray microanalysis (EDX) were carried out in order to understand the sorbent capability. Optimization of the factors of temperature pre-treatment of RS (90, 100, 110, 120, 130 or 140◦C), time of heating (10, 20, 30, 40, 50, 60 or 70 min), packing density (0.08, 0.10, 0.12, 0.14 or 0.16 g cm−3 ) and oil concentration (5, 10, 15, 20 or 25% (v/v)) was carried out using the conventional one-factor-at-a-time (OFAT) approach. To eliminate any non-significant factors, a Plackett–Burman design (PBD) in the response surface methodology (RSM) was used. A central composite design (CCD) was used to identify the presence of significant interactions between factors. The quadratic model produced provided a very good fit to the data (R2 = 0.9652). The optimized conditions generated from the CCD were 120◦C, 10 min, 0.148 g cm−3 and 25% (v/v), and these conditions enhanced oil sorption capacity from 19.6 (OFAT) to 26 mL of diesel oil, a finding verified experimentally. This study provides an improved understanding of the use of a natural sorbent as an approach to remediate diesel pollution.
AB - Rice straw, an agricultural waste product generated in huge quantities worldwide, is utilized to remediate diesel pollution as it possesses excellent characteristics as a natural sorbent. This study aimed to optimize factors that significantly influence the sorption capacity and the efficiency of oil absorption from diesel-polluted seawater by rice straw (RS). Spectroscopic analysis by attenuated total reflectance infrared (ATR-IR) spectroscopy and surface morphology characterization by variable pressure scanning electron microscopy (VPSEM) and energy-dispersive X-ray microanalysis (EDX) were carried out in order to understand the sorbent capability. Optimization of the factors of temperature pre-treatment of RS (90, 100, 110, 120, 130 or 140◦C), time of heating (10, 20, 30, 40, 50, 60 or 70 min), packing density (0.08, 0.10, 0.12, 0.14 or 0.16 g cm−3 ) and oil concentration (5, 10, 15, 20 or 25% (v/v)) was carried out using the conventional one-factor-at-a-time (OFAT) approach. To eliminate any non-significant factors, a Plackett–Burman design (PBD) in the response surface methodology (RSM) was used. A central composite design (CCD) was used to identify the presence of significant interactions between factors. The quadratic model produced provided a very good fit to the data (R2 = 0.9652). The optimized conditions generated from the CCD were 120◦C, 10 min, 0.148 g cm−3 and 25% (v/v), and these conditions enhanced oil sorption capacity from 19.6 (OFAT) to 26 mL of diesel oil, a finding verified experimentally. This study provides an improved understanding of the use of a natural sorbent as an approach to remediate diesel pollution.
KW - Morphology
KW - Oil absorption efficiency
KW - One-factor-at-a-time (OFAT)
KW - Response surface methodology (RSM)
KW - Rice straw
KW - Sorption capacity
KW - Spectroscopic analysis
UR - http://www.scopus.com/inward/record.url?scp=85119978869&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85119978869&partnerID=8YFLogxK
U2 - 10.3390/w13233317
DO - 10.3390/w13233317
M3 - Article
AN - SCOPUS:85119978869
SN - 2073-4441
VL - 13
JO - Water (Switzerland)
JF - Water (Switzerland)
IS - 23
M1 - 3317
ER -