Sine-square deformation applied to classical Ising models

Chisa Hotta, Takashi Nakamaniwa, Tota Nakamura

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Sine-square deformation (SSD) is a treatment proposed in quantum systems, which spatially modifies a Hamiltonian, gradually decreasing the local energy scale from the center of the system toward the edges by a sine-squared envelope function. It is known to serve as a good boundary condition as well as to provide physical quantities reproducing those of the infinite-size systems. We apply the SSD to one- and two-dimensional classical Ising models. Based on the analytical calculations and Monte Carlo simulations, we find that the classical SSD system is regarded as an extended canonical ensemble of a local subsystem, each characterized by its own effective temperature. This effective temperature is defined by normalizing the system temperature by the deformed local energy scale. A single calculation for a given system temperature provides a set of physical quantities of various temperatures that quantitatively reproduces well those of the uniform system.

Original languageEnglish
Article number034133
JournalPhysical Review E
Volume104
Issue number3
DOIs
Publication statusPublished - 2021 Sept

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Sine-square deformation applied to classical Ising models'. Together they form a unique fingerprint.

Cite this