Surface Topography of PDMS Replica Transferred from Various Decellularized Aortic Lumens Affects Cellular Orientation

Tsuyoshi Kimura, Mayuka Kondo, Yoshihide Hashimoto, Toshiya Fujisato, Naoko Nakamura, Akio Kishida

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


Cells sense and respond to various surface topographies of substrates. Many types of topographical architectures have been developed for understanding cell-extracellular matrix (ECM) interactions and for their application in biomaterials. In the present study, as a topographical surface similar to native tissue, we developed a PDMS replica prepared using the transferring method of the decellularized aorta, which is an ECM assembly, and its cellular behaviors, such as orientation and elongation on it. Decellularized aortas were prepared by high hydrostatic pressure (HHP) and sodium dodecyl sulfate (SDS) methods for use as templates. Scanning electron microscopic observation of the SDS replica showed a randomly rough surface. Further, microscaled linear structures along the direction of the aortic longitudinal axis were observed on the HHP replica. These results indicated that the topographical surface of the HHP and SDS decellularized aorta could be replicated to their replicas at a microscale. Fibroblasts (NIH3T3) and endothelial cells (HUVECs) were cultured on their surfaces. Although they were randomly aligned on the SDS replica and flat surface, the high cellular alignment along with the direction of the aortic longitudinal axis was shown in the HHP replica and HHP decellularized aorta. These results suggest that the topographical structure similar to a native aorta could effectively induce the cell alignment, which is important to regulate cellular functions, and could provide important methodologies and knowledge for vascular biomaterials or culture substrates.

Original languageEnglish
Pages (from-to)5721-5726
Number of pages6
JournalACS Biomaterials Science and Engineering
Issue number11
Publication statusPublished - 2019 Nov 11


  • cellular alignment
  • cellular orientation
  • decellularized tissue
  • replica
  • surface topography

ASJC Scopus subject areas

  • Biomaterials
  • Biomedical Engineering


Dive into the research topics of 'Surface Topography of PDMS Replica Transferred from Various Decellularized Aortic Lumens Affects Cellular Orientation'. Together they form a unique fingerprint.

Cite this