Systematic Study of Effective Hydrothermal Synthesis to Fabricate Nb-Incorporated TiO2 for Oxygen Reduction Reaction

So Yoon Lee, Daiki Numata, Ai Serizawa, Koudai Sasaki, Kaito Fukushima, Xiulan Hu, Takahiro Ishizaki

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Fuel cells are expected to serve as next-generation energy conversion devices owing to their high energy density, high power, and long life performance. The oxygen reduction reaction (ORR) is important for determining the performance of fuel cells; therefore, using catalysts to promote the ORR is essential for realizing the practical applications of fuel cells. Herein, we propose Nb-incorporated TiO2 as a suitable alternative to conventional Pt-based catalysts, because Nb doping has been reported to improve the conductivity and electron transfer number of TiO2. In addition, Nb-incorporated TiO2 can induce the electrocatalytic activity for the ORR. In this paper, we report the synthesis method for Nb-incorporated TiO2 through a hydrothermal process with and without additional load pressures. The electrocatalytic activity of the synthesized samples for the ORR was also demonstrated. In this process, the samples obtained under various load pressures exceeding the saturated vapor pressure featured a high content of Nb and crystalline TiNb2 O7, resulting in an ellipsoidal morphology. X-ray diffraction results also revealed that, on increasing the Nb doping amounts, the diffraction peak of the anatase TiO2 shifted to a lower angle and the full width at half maximum decreased. This implies that the Ti atom is exchanged with the Nb atom during this process, resulting in a decrease in TiO2 crystallinity. At a doping level of 10%, Nb-incorporated TiO2 exhibited the best electrocatalytic activity in terms of the oxygen reduction current (iORR) and onset potential for the ORR (EORR); this suggests that 10% Nb-doped samples have the potential for enhancing electrocatalytic activity.

Original languageEnglish
Article number1633
JournalMaterials
Volume15
Issue number5
DOIs
Publication statusPublished - 2022 Mar 1

Keywords

  • Electrocatalytic activity
  • Hydrothermal synthetic process
  • Nb doping
  • ORR
  • TiO

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Systematic Study of Effective Hydrothermal Synthesis to Fabricate Nb-Incorporated TiO2 for Oxygen Reduction Reaction'. Together they form a unique fingerprint.

Cite this