Tubular gel motility driven by chemical reaction networks

Takashi Mikanohara, Shingo Maeda, Yusuke Hara, Shuji Hashimoto

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

A novel gel actuator exhibits a peristaltic motion is designed. We proposed a new approach of coupling an acid autocatalytic reaction and a pH-responsive gel in order to cause contraction waves. The poly(AAm-co-AAc) microphase-separated tubular gel was synthesized, which can be inflowed reaction solution to its hollow. We focused on its kinetics and evaluated the characteristics of the microphase-separated gels. And we also demonstrated that the propagation of the contraction region occurs in the tubular gel. Our final goal is to develop a biomimetic chemical robot which realizes a peristaltic locomotion by forming contraction waves like a snail.

Original languageEnglish
Title of host publication2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011
Pages2008-2013
Number of pages6
DOIs
Publication statusPublished - 2011
Event2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011 - Phuket, Thailand
Duration: 2011 Dec 72011 Dec 11

Publication series

Name2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011

Conference

Conference2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011
Country/TerritoryThailand
CityPhuket
Period11/12/711/12/11

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Tubular gel motility driven by chemical reaction networks'. Together they form a unique fingerprint.

Cite this