X-ray photoelectron spectroscopy-based valence band spectra of passive films on titanium

Yuzuki Eda, Tomoyo Manaka, Takao Hanawa, Peng Chen, Maki Ashida, Kazuhiko Noda

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Titanium (Ti) is always covered by thin passive films. Thus, valence band (VB) spectra, obtained using X-ray photoelectron spectroscopy (XPS), are superpositions of the VB spectra of passive films and that of the metallic Ti substrate. In this study, to obtain the VB spectra only of passive films, angular resolution (for eliminating the substrate Ti contribution) and argon ion sputtering (for removing passive films) were used along with XPS. The passive film on Ti was determined to consist of a very thin TiO2layer with small amounts of Ti2O3, TiO, hydroxyl groups, and water with a thickness of 5.9 nm. The VB spectra of Ti were deconvoluted into four peak components: a peak at ~1 eV, attributed to the Ti metal substrate; a broad peak in the 3–10 eV range, mainly attributed to O 2p (~6 eV) and O 2p-Ti 3d hybridized states (~8 eV), owing to the π (non-bonding) and σ (bonding) orbitals in the passive oxide film; and a peak at ~13 eV, attributed to the 3σ orbital of O 2p as OHor H2O. The VB region spectrum between approximately 3 and 14 eV from Ti is originating from the passive film on Ti. In particular, characterization of VB spectrum obtained with a takeoff angle of less than 24° is effective to obtain VB spectrum only from the passive film on Ti. The property as n-type semiconductor of the passive film on Ti is probably higher than that of rutile TiO2ceramics.

Original languageEnglish
Pages (from-to)892-898
Number of pages7
JournalSurface and Interface Analysis
Issue number8
Publication statusPublished - 2022 Aug


  • X-ray photoelectron spectroscopy
  • passive film
  • titanium
  • valence band

ASJC Scopus subject areas

  • General Chemistry
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry


Dive into the research topics of 'X-ray photoelectron spectroscopy-based valence band spectra of passive films on titanium'. Together they form a unique fingerprint.

Cite this