2D Lidar Data Matching: Using Simulated Annealing on Point-Based Method

Linh Tao, Tinh Nguyen, Trung Nguyen, Toshio Ito, Tam Bui

研究成果: Conference contribution

抄録

The paper proposes a novel, simple but effective method to align 2D LiDAR laser data. The method uses point-based approach with a simulated annealing searching algorithm. Iterative Closest Point (ICP) is a common method used to solve 2D Lidar alignment problem and widely used to solve Simultaneous localization and mapping (SLAM) problem. The local minima problem allows ICP can be applied only in final aligning steps where data are roughly aligned. The proposed method solves this problem by using simulated annealing (SA) searching algorithm to align two data from distance. SA works on point medium on a point-based approach to reduce the searching dimensions and enhance convergence rate. The method has proved its robustness and efficiency in aligning 2D LiDAR laser data.

本文言語English
ホスト出版物のタイトルAdvances in Asian Mechanism and Machine Science - Proceedings of IFToMM Asian MMS 2021
編集者Nguyen Van Khang, Nguyen Quang Hoang, Marco Ceccarelli
出版社Springer Science and Business Media B.V.
ページ944-949
ページ数6
ISBN(印刷版)9783030918910
DOI
出版ステータスPublished - 2022
イベント6th IFToMM Asian Mechanisms and Machine Science Conference, Asian MMS 2021 - Virtual, Online
継続期間: 2021 12月 152021 12月 18

出版物シリーズ

名前Mechanisms and Machine Science
113 MMS
ISSN(印刷版)2211-0984
ISSN(電子版)2211-0992

Conference

Conference6th IFToMM Asian Mechanisms and Machine Science Conference, Asian MMS 2021
CityVirtual, Online
Period21/12/1521/12/18

ASJC Scopus subject areas

  • 材料力学
  • 機械工学

フィンガープリント

「2D Lidar Data Matching: Using Simulated Annealing on Point-Based Method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル