A Method for Adversarial Example Generation by Perturbing Selected Pixels

Kamegawa Tomoki, Kimura Masaomi

研究成果: Conference contribution

抄録

Recent research has shown that deep neural networks can intentionally change their output by adding perturbation to the input. Such images are called adversarial examples. An attack method that uses sparse perturbations is Jacobian-based Saliency Map Attack(JSMA), which finds the pixel to perturb by generating a saliency map from the gradient of the output. It deceives the neural network by changing the pixel value to the maximum or minimum value. However, changing the value of a pixel to a maximum or minimum value is not optimal for generating adversarial examples because the perturbation is perceived by human eyes. In this study, we propose a new method to reduce perturbations and generate adversarial examples in which perturbations are not easily recognized by human eyes. Our method generates adversarial examples with smaller perturbations by improving the extraction conditions of pixels in JSMA to be perturbed and the method of adding perturbations. Experimental results show that the method can generate smaller perturbations with a misclassification rate comparable to that of JSMA. This makes the perturbations less recognizable to human eyes.

本文言語English
ホスト出版物のタイトルProceedings of 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1109-1114
ページ数6
ISBN(電子版)9786165904773
DOI
出版ステータスPublished - 2022
イベント2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022 - Chiang Mai, Thailand
継続期間: 2022 11月 72022 11月 10

出版物シリーズ

名前Proceedings of 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022

Conference

Conference2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022
国/地域Thailand
CityChiang Mai
Period22/11/722/11/10

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 情報システム
  • 信号処理

フィンガープリント

「A Method for Adversarial Example Generation by Perturbing Selected Pixels」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル