TY - GEN
T1 - A microfluidic model of cardiovascular bubble lodging
AU - Bull, Joseph L.
AU - Heo, Yun Seok
AU - Futai, Nobuyuki
AU - Fowlkes, J. Brian
AU - Calderón, Andrés J.
AU - Huh, Dongeun
AU - Takayama, Shuichi
PY - 2007
Y1 - 2007
N2 - Embolotherapy involves the occlusion of blood flow to tumors to treat a variety of cancers, including renal carcinoma and hepatocellular carcinoma. The accompanying liver cirrhosis makes the treatment of hepatocellular carcinoma by traditional methods difficult. Previous attempts at embolotherapy have used solid emboli. A major difficulty in embolotherapy is restricting delivery of the emboli to the tumor. We are developing a novel minimally invasive gas embolotherapy technique that uses gas bubbles rather than solid emboli. The bubbles originate as encapsulated liquid droplets that are small enough to pass through capillaries. The droplets can be selectively vaporized in vivo by focused high intensity ultrasound to form gas bubbles which are then sufficiently large to lodge in the tumor vasculature. We investigated the dynamics of bubble lodging in microfluidic model bifurcations made of poly(dimethylsiloxane) and in theoretical analyses. The results show that the critical driving pressure below which a bubble will lodge in a bifurcation is significantly less than the driving pressure required to dislodge it. Based these results, we estimate that gas bubbles from embolotherapy can lodge in vessels 20 μm or smaller in diameter, and conclude that bubbles may potentially be used to reduce blood flow to tumor microcirculation.
AB - Embolotherapy involves the occlusion of blood flow to tumors to treat a variety of cancers, including renal carcinoma and hepatocellular carcinoma. The accompanying liver cirrhosis makes the treatment of hepatocellular carcinoma by traditional methods difficult. Previous attempts at embolotherapy have used solid emboli. A major difficulty in embolotherapy is restricting delivery of the emboli to the tumor. We are developing a novel minimally invasive gas embolotherapy technique that uses gas bubbles rather than solid emboli. The bubbles originate as encapsulated liquid droplets that are small enough to pass through capillaries. The droplets can be selectively vaporized in vivo by focused high intensity ultrasound to form gas bubbles which are then sufficiently large to lodge in the tumor vasculature. We investigated the dynamics of bubble lodging in microfluidic model bifurcations made of poly(dimethylsiloxane) and in theoretical analyses. The results show that the critical driving pressure below which a bubble will lodge in a bifurcation is significantly less than the driving pressure required to dislodge it. Based these results, we estimate that gas bubbles from embolotherapy can lodge in vessels 20 μm or smaller in diameter, and conclude that bubbles may potentially be used to reduce blood flow to tumor microcirculation.
UR - http://www.scopus.com/inward/record.url?scp=40449110396&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=40449110396&partnerID=8YFLogxK
U2 - 10.1115/FEDSM2007-37446
DO - 10.1115/FEDSM2007-37446
M3 - Conference contribution
AN - SCOPUS:40449110396
SN - 0791842886
SN - 9780791842881
T3 - 2007 Proceedings of the 5th Joint ASME/JSME Fluids Engineering Summer Conference, FEDSM 2007
SP - 691
EP - 694
BT - 2007 Proceedings of the 5th Joint ASME/JSME Fluids Engineering Summer Conference, FEDSM 2007
T2 - 2007 5th Joint ASME/JSME Fluids Engineering Summer Conference, FEDSM 2007
Y2 - 30 July 2007 through 2 August 2007
ER -