TY - JOUR
T1 - A sniffer-camera for imaging of ethanol vaporization from wine
T2 - The effect of wine glass shape
AU - Arakawa, Takahiro
AU - Iitani, Kenta
AU - Wang, Xin
AU - Kajiro, Takumi
AU - Toma, Koji
AU - Yano, Kazuyoshi
AU - Mitsubayashi, Kohji
N1 - Publisher Copyright:
This journal is © The Royal Society of Chemistry 2015.
PY - 2015/4/21
Y1 - 2015/4/21
N2 - A two-dimensional imaging system (Sniffer-camera) for visualizing the concentration distribution of ethanol vapor emitting from wine in a wine glass has been developed. This system provides image information of ethanol vapor concentration using chemiluminescence (CL) from an enzyme-immobilized mesh. This system measures ethanol vapor concentration as CL intensities from luminol reactions induced by alcohol oxidase and a horseradish peroxidase (HRP)-luminol-hydrogen peroxide system. Conversion of ethanol distribution and concentration to two-dimensional CL was conducted using an enzyme-immobilized mesh containing an alcohol oxidase, horseradish peroxidase, and luminol solution. The temporal changes in CL were detected using an electron multiplier (EM)-CCD camera and analyzed. We selected three types of glasses - a wine glass, a cocktail glass, and a straight glass - to determine the differences in ethanol emission caused by the shape effects of the glass. The emission measurements of ethanol vapor from wine in each glass were successfully visualized, with pixel intensity reflecting ethanol concentration. Of note, a characteristic ring shape attributed to high alcohol concentration appeared near the rim of the wine glass containing 13 °C wine. Thus, the alcohol concentration in the center of the wine glass was comparatively lower. The Sniffer-camera was demonstrated to be sufficiently useful for non-destructive ethanol measurement for the assessment of food characteristics.
AB - A two-dimensional imaging system (Sniffer-camera) for visualizing the concentration distribution of ethanol vapor emitting from wine in a wine glass has been developed. This system provides image information of ethanol vapor concentration using chemiluminescence (CL) from an enzyme-immobilized mesh. This system measures ethanol vapor concentration as CL intensities from luminol reactions induced by alcohol oxidase and a horseradish peroxidase (HRP)-luminol-hydrogen peroxide system. Conversion of ethanol distribution and concentration to two-dimensional CL was conducted using an enzyme-immobilized mesh containing an alcohol oxidase, horseradish peroxidase, and luminol solution. The temporal changes in CL were detected using an electron multiplier (EM)-CCD camera and analyzed. We selected three types of glasses - a wine glass, a cocktail glass, and a straight glass - to determine the differences in ethanol emission caused by the shape effects of the glass. The emission measurements of ethanol vapor from wine in each glass were successfully visualized, with pixel intensity reflecting ethanol concentration. Of note, a characteristic ring shape attributed to high alcohol concentration appeared near the rim of the wine glass containing 13 °C wine. Thus, the alcohol concentration in the center of the wine glass was comparatively lower. The Sniffer-camera was demonstrated to be sufficiently useful for non-destructive ethanol measurement for the assessment of food characteristics.
UR - http://www.scopus.com/inward/record.url?scp=84952877465&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84952877465&partnerID=8YFLogxK
U2 - 10.1039/c4an02390k
DO - 10.1039/c4an02390k
M3 - Article
C2 - 25756409
AN - SCOPUS:84952877465
SN - 0003-2654
VL - 140
SP - 2881
EP - 2886
JO - The Analyst
JF - The Analyst
IS - 8
ER -