A Study of Throughput Prediction using Convolutional Neural Network over Factory Environment

Yafei Hou, Kazuto Yano, Norisato Suga, Julian Webber, Eiji Nii, Toshihide Higashimori, Satoshi Denno, Yoshinori Suzuki

研究成果: Conference contribution

抄録

In this paper, using the time-series throughput data generated from a simulated factory scenario, we study throughput prediction using convolutional neural network (CNN). Different with image or numerical recognition using CNN, in which the distribution of the prediction target during training stage usually has the similar level, the distribution of the throughput data concentrates only on several values. This centralized distribution may degrade the prediction accuracy. Therefore, we will propose a new CNN prediction method employing target vectorization which can mitigate the centralization of distribution. This method makes training process of CNN hold more possibility and improves the prediction accuracy of the throughput.

本文言語English
ホスト出版物のタイトル24th International Conference on Advanced Communication Technology
ホスト出版物のサブタイトルArtificial Intelligence Technologies toward Cybersecurity!!, ICACT 2022 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ429-434
ページ数6
ISBN(電子版)9791188428090
DOI
出版ステータスPublished - 2022
外部発表はい
イベント24th International Conference on Advanced Communication Technology, ICACT 2022 - Virtual, Online, Korea, Republic of
継続期間: 2022 2月 132022 2月 16

出版物シリーズ

名前International Conference on Advanced Communication Technology, ICACT
2022-February
ISSN(印刷版)1738-9445

Conference

Conference24th International Conference on Advanced Communication Technology, ICACT 2022
国/地域Korea, Republic of
CityVirtual, Online
Period22/2/1322/2/16

ASJC Scopus subject areas

  • 電子工学および電気工学

フィンガープリント

「A Study of Throughput Prediction using Convolutional Neural Network over Factory Environment」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル