Adaptive Fuzzy Neural Network Command Filtered Impedance Control of Constrained Robotic Manipulators With Disturbance Observer

Gang Li, Jinpeng Yu, Xinkai Chen

研究成果: Article査読

19 被引用数 (Scopus)

抄録

This article proposes an adaptive fuzzy neural network (NN) command filtered impedance control for constrained robotic manipulators with disturbance observers. First, barrier Lyapunov functions are introduced to handle the full-state constraints. Second, the adaptive fuzzy NN is introduced to handle the unknown system dynamics and a disturbance observer is designed to eliminate the effect of unknown bound disturbance. Then, a modified auxiliary system is designed to suppress the input saturation effect. In addition, the command filtered technique and error compensation mechanism are used to directly obtain the derivative of the virtual control law and improve the control accuracy. The barrier Lyapunov theory is used to prove that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded. Finally, simulation studies are performed to illustrate the effectiveness of the proposed control method.

本文言語English
ジャーナルIEEE Transactions on Neural Networks and Learning Systems
DOI
出版ステータスAccepted/In press - 2021

ASJC Scopus subject areas

  • ソフトウェア
  • コンピュータ サイエンスの応用
  • コンピュータ ネットワークおよび通信
  • 人工知能

フィンガープリント

「Adaptive Fuzzy Neural Network Command Filtered Impedance Control of Constrained Robotic Manipulators With Disturbance Observer」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル