An Error-Free Transformation for Matrix Multiplication with Reproducible Algorithms and Divide and Conquer Methods

研究成果: Conference article査読

3 被引用数 (Scopus)

抄録

This paper discusses accurate numerical algorithms for matrix multiplication. Matrix multiplication is a basic and important problem in numerical linear algebra. Numerical computations using floating-point arithmetic can be quickly performed on existing computers. However, the accumulation of rounding errors due to finite precision arithmetic is a critical problem. An error-free transformation for matrix multiplication is reviewed in this paper. Such a transformation is extremely useful for developing accurate numerical algorithms for matrix multiplication. One advantage of the transformation is that it exploits Basic Linear Algebra Subprograms (BLAS). We provide a rounding error analysis of reproducible algorithms for matrix multiplication based on the error-free transformation. In addition, we propose an error-free transformation for matrix multiplication that can be utilized with the divide and conquer methods.

本文言語English
論文番号012062
ジャーナルJournal of Physics: Conference Series
1490
1
DOI
出版ステータスPublished - 2020 6月 9
イベント5th International Conference on Mathematics: Pure, Applied and Computation, ICoMPAC 2019 - Surabaya, Indonesia
継続期間: 2019 10月 19 → …

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「An Error-Free Transformation for Matrix Multiplication with Reproducible Algorithms and Divide and Conquer Methods」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル