An inequality between class numbers and Ono's numbers associated to imaginary quadratic fields

Fumio Sairaiji, Kenichi Shimizu

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Ono's number pD and the class number hD, associated to an imaginary quadratic field with discriminant -D, are closely connected. For example, Frobenius-Rabinowitsch Theorem asserts that pD = 1 if and only if hD = 1. In 1986, T. Ono raised a problem whether the inequality hD ≤ 2pD holds. However, in our previous paper [8], we saw that there are infinitely many D such that the inequality does not hold. In this paper we give a modification to the inequality hD ≤ 2pD. We also discuss lower and upper bounds for Ono's number pD.

本文言語English
ページ(範囲)105-108
ページ数4
ジャーナルProceedings of the Japan Academy Series A: Mathematical Sciences
78
7
DOI
出版ステータスPublished - 2002 9月
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「An inequality between class numbers and Ono's numbers associated to imaginary quadratic fields」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル