TY - JOUR
T1 - An SiO2 film deposition technology using tetraethylorthosilicate and ozone for interlayer metal dielectrics
AU - Kubo, Akira
AU - Homma, Tetsuya
AU - Murao, Yukinobu
PY - 1996/5
Y1 - 1996/5
N2 - A void-free SiO2 interlayer dielectric film formation technology has been developed. This technology utilizes tetraethylorthosilicate [TEOS, Si(OC2H5)4]/ozone (O3) atmospheric pressure chemical vapor deposition (APCVD) SiO2 film gap-filling, and the TEOS-based dual frequency plasma enhanced vapor deposition (PECVD) SiO2 film as an underlayer of TEOS/O3 APCVD SiO2 film. This technology enables the formation of void-free SiO2 interlayer dielectric films without any pretreatment for the underlayer between aluminum wirings line and space of 600 and 600 nm, respectively. Single-frequency PECVD SiO2 films are also applied as an underlayer of TEOS/O3 APCVD SiO2 gap-filling. However, void-free gap-filling cannot be achieved, even using the single frequency PECVD SiO2 underlayer. To clarify the mechanism of the void-free gap-filling, the underlayer PECVD SiO2 film properties are investigated. The SiO2 film density at the Al wiring pattern's sidewall of the dual-frequency PECVD SiO2 films is equal to that at the pattern's bottom, while the density at the pattern's sidewall formed using single-frequency PECVD SiO2 films is lower than that at the pattern's bottom. The carbon concentration for the dual-frequency PECVD SiO2 films is lower than that for the single-frequency PECVD SiO2 films. The H2O and acetaldehyde (CH3CHO) detected from the dual-frequency PECVD SiO2 films due to the oxidation of the ethoxy group, is much more than that from the single-frequency PECVD SiO2 films. Based on the experimental results, the mechanism of void-free gap-filling of TEOS/O3 APCVD SiO2 films is considered to consist of three steps; (i) involving R ions (R, alkyl group) into the PECVD SiO2 films during film deposition, (ii) Si-OR bonds formation at the PECVD SiO2 films' surface, and (iii) oligomers flow at TEOS/O3 APCVD SiO2 film deposition. It is considered that the oligomers flow is promoted by the Si-OR bonds, resulting in the void-free gap-filling. The dual-frequency PECVD SiO2 films can improve the gap-filling of TEOS/O3 APCVD SiO2 films.
AB - A void-free SiO2 interlayer dielectric film formation technology has been developed. This technology utilizes tetraethylorthosilicate [TEOS, Si(OC2H5)4]/ozone (O3) atmospheric pressure chemical vapor deposition (APCVD) SiO2 film gap-filling, and the TEOS-based dual frequency plasma enhanced vapor deposition (PECVD) SiO2 film as an underlayer of TEOS/O3 APCVD SiO2 film. This technology enables the formation of void-free SiO2 interlayer dielectric films without any pretreatment for the underlayer between aluminum wirings line and space of 600 and 600 nm, respectively. Single-frequency PECVD SiO2 films are also applied as an underlayer of TEOS/O3 APCVD SiO2 gap-filling. However, void-free gap-filling cannot be achieved, even using the single frequency PECVD SiO2 underlayer. To clarify the mechanism of the void-free gap-filling, the underlayer PECVD SiO2 film properties are investigated. The SiO2 film density at the Al wiring pattern's sidewall of the dual-frequency PECVD SiO2 films is equal to that at the pattern's bottom, while the density at the pattern's sidewall formed using single-frequency PECVD SiO2 films is lower than that at the pattern's bottom. The carbon concentration for the dual-frequency PECVD SiO2 films is lower than that for the single-frequency PECVD SiO2 films. The H2O and acetaldehyde (CH3CHO) detected from the dual-frequency PECVD SiO2 films due to the oxidation of the ethoxy group, is much more than that from the single-frequency PECVD SiO2 films. Based on the experimental results, the mechanism of void-free gap-filling of TEOS/O3 APCVD SiO2 films is considered to consist of three steps; (i) involving R ions (R, alkyl group) into the PECVD SiO2 films during film deposition, (ii) Si-OR bonds formation at the PECVD SiO2 films' surface, and (iii) oligomers flow at TEOS/O3 APCVD SiO2 film deposition. It is considered that the oligomers flow is promoted by the Si-OR bonds, resulting in the void-free gap-filling. The dual-frequency PECVD SiO2 films can improve the gap-filling of TEOS/O3 APCVD SiO2 films.
UR - http://www.scopus.com/inward/record.url?scp=0030142749&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030142749&partnerID=8YFLogxK
U2 - 10.1149/1.1836714
DO - 10.1149/1.1836714
M3 - Article
AN - SCOPUS:0030142749
SN - 0013-4651
VL - 143
SP - 1769
EP - 1773
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 5
ER -