Anisotropic etching of dielectrics exposed by high intensity femtosecond pulses

Saulius Juodkazis, Yuusuke Tabuchi, Takahiro Ebisui, Shigeki Matsuo, Hiroaki Misawa

研究成果: Conference article査読

9 被引用数 (Scopus)


Post-processing of crystalline and glass materials after the exposure to femtosecond pulses was carried out by wet etching in water solutions of hydrofluoric acid. Crystalline sapphire and quartz showed high (larger than 100) anisotropy of etching, which allowed to develop high-aspect-ratio three-dimensional structures in the volume of those dielectrics. In silicate glasses the anisotropy of wet etching can be achieved by a proper selection of the overlap of adjacent pulses during recording, their energy, and focusing. Three-dimensional structures in silica glass (viosil with OH concentration below 1200 ppm) with a high aspect ratio of 100 were achieved. The mechanism of anisotropy in wet etching is discussed. Surface irradiation of sapphire at irradiance close to that of surface ablation recorded structural modifications resembling the ripples. Those structures were made observable only after wet etching. Period of the ripples can be explained by the recently presented theory (Y. Shimotsuma et al., Phys. Rev. Lett. 91 247405-1 (2003)). Sub-micrometer structuring of surface is demonstrated. Electron temperature at the moment of structure recording can be estimated from the period of ripples (for sapphire Te ≃ 11 keV was found).

ジャーナルProceedings of SPIE - The International Society for Optical Engineering
出版ステータスPublished - 2005
イベントAdvanced Laser Technologies 2004 - Rome and Frascati, Italy
継続期間: 2004 9月 102004 9月 15

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • コンピュータ サイエンスの応用
  • 応用数学
  • 電子工学および電気工学


「Anisotropic etching of dielectrics exposed by high intensity femtosecond pulses」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。