Anomaly Traffic Detection with Federated Learning toward Network-based Malware Detection in IoT

Takayuki Nishio, Masataka Nakahara, Norihiro Okui, Ayumu Kubota, Yasuaki Kobayashi, Keizo Sugiyama, Ryoichi Shinkuma

研究成果: Conference contribution

抄録

To mitigate cyberattacks, detecting anomalies in network traffic is of key importance. In this paper, we propose a model training method for detection of Internet of Things (IoT) anomalous traffic that is robust against the contamination of anomalous samples in the training set. The key idea is to focus on the nature of IoT malware infections (i.e., only a limited number of IoT networks contain infected devices) and employ federated learning (FL) to mitigate the impact of anomalous samples on model training. The simulation evaluation using IoT traffic data obtained from residences and malware traffic data collected from sandbox experiments demonstrates that the proposed method does not cause accuracy degradation even when the anomalous samples are contaminated, in contrast with the detection accuracy of baseline methods, which does degrade.

本文言語English
ホスト出版物のタイトル2022 IEEE Global Communications Conference, GLOBECOM 2022 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ299-304
ページ数6
ISBN(電子版)9781665435406
DOI
出版ステータスPublished - 2022
イベント2022 IEEE Global Communications Conference, GLOBECOM 2022 - Virtual, Online, Brazil
継続期間: 2022 12月 42022 12月 8

出版物シリーズ

名前2022 IEEE Global Communications Conference, GLOBECOM 2022 - Proceedings

Conference

Conference2022 IEEE Global Communications Conference, GLOBECOM 2022
国/地域Brazil
CityVirtual, Online
Period22/12/422/12/8

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • ハードウェアとアーキテクチャ
  • 信号処理
  • 再生可能エネルギー、持続可能性、環境
  • 安全性、リスク、信頼性、品質管理

フィンガープリント

「Anomaly Traffic Detection with Federated Learning toward Network-based Malware Detection in IoT」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル