TY - JOUR
T1 - Application of proton beam writing for the direct etching of polytetrafluoroethylene for polydimethylsiloxane replica molding
AU - Nishikawa, Hiroyuki
AU - Hozumi, Takashi
N1 - Funding Information:
The authors acknowledge support from the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2011–2013.
PY - 2013/11
Y1 - 2013/11
N2 - A direct etching phenomenon of polytetrafluoroethylene (PTFE) is reported via 1.0 MeV proton beam writing. With a fluence level of more than 0.9 μC/mm2, direct etching of the PTFE is observed using a scanning electron microscope. The decrease of CF2 and CF3 bonds in the PTFE composition is also observed using Fourier-transform infrared analysis, which indicates that the decomposition of the PTFE is involved in the direct etching process. With increasing proton beam fluence levels up to 9.6 μC/mm2, the depth of the micromachining increases to around 55 μm, which is larger than the predicted range of 16.5 μm for 1.0 MeV protons incident on PTFE. Coupled with heat treatments in vacuum or in air at temperatures of more than 200 °C, holes with smooth sidewalls and a smooth bottom surface are obtained. Polydimethylsiloxane replication of square patterns down to 5 μm wide and with a height of 16 μm has been demonstrated. This direct PTFE etching technique may open new possibilities for micromachining PTFE molds by proton beam writing for polydimethylsiloxane replica molding.
AB - A direct etching phenomenon of polytetrafluoroethylene (PTFE) is reported via 1.0 MeV proton beam writing. With a fluence level of more than 0.9 μC/mm2, direct etching of the PTFE is observed using a scanning electron microscope. The decrease of CF2 and CF3 bonds in the PTFE composition is also observed using Fourier-transform infrared analysis, which indicates that the decomposition of the PTFE is involved in the direct etching process. With increasing proton beam fluence levels up to 9.6 μC/mm2, the depth of the micromachining increases to around 55 μm, which is larger than the predicted range of 16.5 μm for 1.0 MeV protons incident on PTFE. Coupled with heat treatments in vacuum or in air at temperatures of more than 200 °C, holes with smooth sidewalls and a smooth bottom surface are obtained. Polydimethylsiloxane replication of square patterns down to 5 μm wide and with a height of 16 μm has been demonstrated. This direct PTFE etching technique may open new possibilities for micromachining PTFE molds by proton beam writing for polydimethylsiloxane replica molding.
UR - http://www.scopus.com/inward/record.url?scp=84890073215&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84890073215&partnerID=8YFLogxK
U2 - 10.1116/1.4821650
DO - 10.1116/1.4821650
M3 - Article
AN - SCOPUS:84890073215
SN - 1071-1023
VL - 31
JO - Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
JF - Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
IS - 6
M1 - 6F403
ER -