Approximate Computing Technique Using Memoization and Simplified Multiplication

Yoshinori Ono, Kimiyoshi Usami

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

In embedded systems, approximate computing can strongly promote reduction of execution time and energy consumption in exchange for some output errors. We focused on 'Fuzzy memoization', which is one of the approximate computing techniques. We improved it by using simplifying multiplication. By using this approach, we have developed a novel technique to reduce execution time and energy consumption while keeping output precision. Then, we applied it to grayscale filters on the Zynq system that contains ARM-based processor and field-programm-able gate array (FPGA). Evaluation results from the implemented system showed that our proposed technique can reduce the execution time by up to 28% and reduce the energy consumption by 11% in spite of very high-quality output images.

本文言語English
ホスト出版物のタイトル34th International Technical Conference on Circuits/Systems, Computers and Communications, ITC-CSCC 2019
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781728132716
DOI
出版ステータスPublished - 2019 6月
イベント34th International Technical Conference on Circuits/Systems, Computers and Communications, ITC-CSCC 2019 - JeJu, Korea, Republic of
継続期間: 2019 6月 232019 6月 26

出版物シリーズ

名前34th International Technical Conference on Circuits/Systems, Computers and Communications, ITC-CSCC 2019

Conference

Conference34th International Technical Conference on Circuits/Systems, Computers and Communications, ITC-CSCC 2019
国/地域Korea, Republic of
CityJeJu
Period19/6/2319/6/26

ASJC Scopus subject areas

  • 情報システム
  • 電子工学および電気工学
  • 人工知能
  • コンピュータ ネットワークおよび通信
  • ハードウェアとアーキテクチャ

フィンガープリント

「Approximate Computing Technique Using Memoization and Simplified Multiplication」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル