Cluster analysis and finite-size scaling for Ising spin systems

Yusuke Tomita, Yutaka Okabe, Chin Kun Hu

研究成果: Article査読

48 被引用数 (Scopus)

抄録

Based on the connection between the Ising model and a correlated percolation model, we calculate the distribution function for the fraction [Formula Presented] of lattice sites in percolating clusters in subgraphs with n percolating clusters, [Formula Presented] and the distribution function for magnetization [Formula Presented] in subgraphs with n percolating clusters, [Formula Presented] We find that [Formula Presented] and [Formula Presented] have very good finite-size scaling behavior and that they have universal finite-size scaling functions for the model on square, plane triangular, and honeycomb lattices when aspect ratios of these lattices have the proportions [Formula Presented] The complex structure of the magnetization distribution function [Formula Presented] for the system with large aspect ratio could be understood from the independent orientations of two or more percolation clusters in such a system.

本文言語English
ページ(範囲)2716-2720
ページ数5
ジャーナルPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
60
3
DOI
出版ステータスPublished - 1999
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Cluster analysis and finite-size scaling for Ising spin systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル