Cluster analysis of the Ising model and universal finite-size scaling

Yutaka Okabe, Kazuhisa Kaneda, Yusuke Tomita, MacOto Kikuchi, Chin Kun Hu

研究成果: Conference article査読

4 被引用数 (Scopus)

抄録

The recent progress in the study of finite-size scaling (FSS) properties of the Ising model is briefly reviewed. We calculate the universal FSS functions for the Binder parameter g and the magnetization distribution function p(m) for the Ising model on L1 × L2 two-dimensional lattices with titled boundary conditions. We show that the FSS functions are universal for fixed sets of the aspect ratio L1/L2 and the tilt parameter. We also study the percolating properties of the Ising model, giving attention to the effects of the aspect ratio of finite systems. We elucidate the origin of the complex structure of p(m) for the system with large aspect ratio by the multiple-percolating-cluster argument.

本文言語English
ページ(範囲)233-241
ページ数9
ジャーナルPhysica A: Statistical Mechanics and its Applications
281
1
DOI
出版ステータスPublished - 2000 6月 15
外部発表はい
イベント5th Taiwan International Symposium on Statistical Physics (StatPhys-Taiwan-1999) - Taipei, Taiwan
継続期間: 1999 8月 91999 8月 12

ASJC Scopus subject areas

  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Cluster analysis of the Ising model and universal finite-size scaling」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル