Convergence Acceleration of Shifted LR Transformations for Totally Nonnegative Hessenberg Matrices

Akiko Fukuda, Yusaku Yamamoto, Masashi Iwasaki, Emiko Ishiwata, Yoshimasa Nakamura

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We design shifted LR transformations based on the integrable discrete hungry Toda equation to compute eigenvalues of totally nonnegative matrices of the banded Hessenberg form. The shifted LR transformation can be regarded as an extension of the extension employed in the well-known dqds algorithm for the symmetric tridiagonal eigenvalue problem. In this paper, we propose a new and effective shift strategy for the sequence of shifted LR transformations by considering the concept of the Newton shift. We show that the shifted LR transformations with the resulting shift strategy converge with order 2 − ε for arbitrary ε > 0.

本文言語English
ページ(範囲)677-702
ページ数26
ジャーナルApplications of Mathematics
65
5
DOI
出版ステータスPublished - 2020 10月 1

ASJC Scopus subject areas

  • 応用数学

フィンガープリント

「Convergence Acceleration of Shifted LR Transformations for Totally Nonnegative Hessenberg Matrices」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル