Convexity Phenomena Arising in an Area-Preserving Crystalline Curvature Flow

Tetsuya Ishiwata, Shigetoshi Yazaki

研究成果: Conference contribution

抄録

An area-preserving crystalline curvature flow is regarded as a simple model of the deformation process of a negative crystal. In the present paper, behavior of polygonal curves by area-preserving crystalline curvature flow is discussed. We show “convexity phenomena”, that is, the solution polygon from a non-convex initial polygon becomes convex in a finite time. In order to show this assertion, we classify edge-disappearing patterns completely and prove that all zero-curvature edges disappear in a finite time, and we also show that evolution process of the flow can be continued beyond such edge-disappearing singularities.

本文言語English
ホスト出版物のタイトルMathematical Physics and Its Interactions - In Honor of the 60th Birthday of Tohru Ozawa
編集者Shuji Machihara
出版社Springer
ページ35-62
ページ数28
ISBN(印刷版)9789819703630
DOI
出版ステータスPublished - 2024
イベントInternational Conference on Mathematical Physics and its Interactions, ICMPI 2021 - Tokyo, Japan
継続期間: 2021 8月 252021 8月 27

出版物シリーズ

名前Springer Proceedings in Mathematics and Statistics
451
ISSN(印刷版)2194-1009
ISSN(電子版)2194-1017

Conference

ConferenceInternational Conference on Mathematical Physics and its Interactions, ICMPI 2021
国/地域Japan
CityTokyo
Period21/8/2521/8/27

ASJC Scopus subject areas

  • 数学一般

フィンガープリント

「Convexity Phenomena Arising in an Area-Preserving Crystalline Curvature Flow」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル