Degree conditions for Hamiltonian graphs to have [a,b] -factors containing a given Hamiltonian cycle

研究成果: Article査読

13 被引用数 (Scopus)

抄録

Let 1≤a<b be integers and G a Hamiltonian graph of order |G|≥(a+b)(2a+b)/b. Suppose that δ(G)≥a+2 and max{deg G(x),degG(y)}≥a|G|/(a+b)+2 for each pair of nonadjacent vertices x and y in G. Then G has an [a,b]-factor which is edge-disjoint from a given Hamiltonian cycle. The lower bound on the degree condition is sharp. For the case of odd a = b, there exists a graph satisfying the conditions of the theorem but having no desired factor. As consequences, we have the degree conditions for Hamiltonian graphs to have [a,b]-factors containing a given Hamiltonian cycle.

本文言語English
ページ(範囲)241-250
ページ数10
ジャーナルDiscrete Mathematics
280
1-3
DOI
出版ステータスPublished - 2004 4月 6
外部発表はい

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 離散数学と組合せ数学

フィンガープリント

「Degree conditions for Hamiltonian graphs to have [a,b] -factors containing a given Hamiltonian cycle」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル