# Degree conditions for Hamiltonian graphs to have [a,b] -factors containing a given Hamiltonian cycle

13 被引用数 (Scopus)

## 抄録

Let 1≤a<b be integers and G a Hamiltonian graph of order |G|≥(a+b)(2a+b)/b. Suppose that δ(G)≥a+2 and max{deg G(x),degG(y)}≥a|G|/(a+b)+2 for each pair of nonadjacent vertices x and y in G. Then G has an [a,b]-factor which is edge-disjoint from a given Hamiltonian cycle. The lower bound on the degree condition is sharp. For the case of odd a = b, there exists a graph satisfying the conditions of the theorem but having no desired factor. As consequences, we have the degree conditions for Hamiltonian graphs to have [a,b]-factors containing a given Hamiltonian cycle.

本文言語 English 241-250 10 Discrete Mathematics 280 1-3 https://doi.org/10.1016/j.disc.2003.10.015 Published - 2004 4月 6 はい

## ASJC Scopus subject areas

• 理論的コンピュータサイエンス
• 離散数学と組合せ数学

## フィンガープリント

「Degree conditions for Hamiltonian graphs to have [a,b] -factors containing a given Hamiltonian cycle」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。