DEGREE SUM CONDITION FOR THE EXISTENCE OF SPANNING k-TREES IN STAR-FREE GRAPHS

Michitaka Furuya, Shun Ichi Maezawa, Ryota Matsubara, Haruhide Matsuda, Shoichi Tsuchiya, Takamasa Yashima

研究成果: Article査読

1 被引用数 (Scopus)

抄録

For an integer k ≥ 2, a k-tree T is defined as a tree with maximum degree at most k. If a k-tree T spans a graph G, then T is called a spanning k-tree of G. Since a spanning 2-tree is a Hamiltonian path, a spanning k-tree is an extended concept of a Hamiltonian path. The first result, implying the existence of k-trees in star-free graphs, was by Caro, Krasikov, and Roditty in 1985, and independently, Jackson and Wormald in 1990, who proved that for any integer k with k ≥ 3, every connected K1,k-free graph contains a spanning k-tree. In this paper, we focus on a sharp condition that guarantees the existence of a spanning k-tree in K1,k+1-free graphs. In particular, we show that every connected K1,k+1-free graph G has a spanning k-tree if the degree sum of any 3k − 3 independent vertices in G is at least |G| − 2, where |G| is the order of G.

本文言語English
ページ(範囲)5-13
ページ数9
ジャーナルDiscussiones Mathematicae - Graph Theory
42
1
DOI
出版ステータスPublished - 2022

ASJC Scopus subject areas

  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「DEGREE SUM CONDITION FOR THE EXISTENCE OF SPANNING k-TREES IN STAR-FREE GRAPHS」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル