Delay-induced blow-up in a planar oscillation model

Alexey Eremin, Emiko Ishiwata, Tetsuya Ishiwata, Yukihiko Nakata

研究成果: Article査読

2 被引用数 (Scopus)

抄録

In this paper we study a system of delay differential equations from the viewpoint of a finite time blow-up of the solution. We prove that the system admits blow-up solutions, no matter how small the length of the delay is. In the non-delay system every solution approaches to a stable unit circle in the plane, thus time delay induces blow-up of solutions, which we call “delay-induced blow-up” phenomenon. Furthermore, it is shown that the system has a family of infinitely many periodic solutions, while the non-delay system has only one stable limit cycle. The system studied in this paper is an example that arbitrary small delay can be responsible for a drastic change of the dynamics. We show numerical examples to illustrate our theoretical results.

本文言語English
ページ(範囲)1037-1061
ページ数25
ジャーナルJapan Journal of Industrial and Applied Mathematics
38
3
DOI
出版ステータスPublished - 2021 9月

ASJC Scopus subject areas

  • 工学(全般)
  • 応用数学

フィンガープリント

「Delay-induced blow-up in a planar oscillation model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル