Detection of Micro-defects on Metal Screw Surfaces Based on Faster Region-Based Convolutional Neural Network

Mohd Nor Azmi Ab Patar, Muhammad Azmi Ayub, Nur Aainaa Zainal, Muhammad Aliff Rosly, Hokyoo Lee, Akihiko Hanafusa

研究成果: Conference contribution

抄録

The detection of defects in a product is one of required production process for quality control. Currently, the quality control process of metal screws uses many manpower for manual inspection. Hence, this study about to implement faster region-based convolutional neural network (faster R-CNN) to detect the micro-defects on metal screw surfaces. The defects of surface damage, stripped screw, and dirty surface screw considered in this research. Raspberry Pi 3 with a camera module is used for image acquisition of the metal screws in determining various kinds of defects. The image is also acquired to be used for the training of the faster R-CNN. A testing is carried out to test the performance of the model. The experiment outcome shows that the detection accuracy of the model is 98.8%. The model also shows superiority in this project detection method compared with the traditional template-matching method and single-shot detector (SSD) model.

本文言語English
ホスト出版物のタイトルIntelligent Manufacturing and Energy Sustainability - Proceedings of ICIMES 2021
編集者A. N. Reddy, Deepak Marla, Margarita N. Favorskaya, Suresh Chandra Satapathy
出版社Springer Science and Business Media Deutschland GmbH
ページ587-597
ページ数11
ISBN(印刷版)9789811664816
DOI
出版ステータスPublished - 2022
イベントInternational Conference on Intelligent Manufacturing and Energy Sustainability, ICIMES 2021 - Hyderabad, India
継続期間: 2021 6月 182021 6月 19

出版物シリーズ

名前Smart Innovation, Systems and Technologies
265
ISSN(印刷版)2190-3018
ISSN(電子版)2190-3026

Conference

ConferenceInternational Conference on Intelligent Manufacturing and Energy Sustainability, ICIMES 2021
国/地域India
CityHyderabad
Period21/6/1821/6/19

ASJC Scopus subject areas

  • 決定科学(全般)
  • コンピュータ サイエンス(全般)

フィンガープリント

「Detection of Micro-defects on Metal Screw Surfaces Based on Faster Region-Based Convolutional Neural Network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル