Distributed Processing Allocation of Machine Learning in Wireless Sensor Networks

Jun Motoyama, Rina Ooka, Takumi Miyoshi, Taku Yamazaki, Takuya Asaka

研究成果: Conference contribution

抄録

Distributed processing technology in wireless sensor network (WSN) has attracted attention because of the performance improvement of sensor nodes. Although the conventional methods divide and allocate computational processing of machine learning to sensor nodes, appropriate allocation has not been realized from the viewpoint of the whole network. In this paper, assuming that multiple machine learning processes occur simultaneously, we propose a processing division and allocation method to equalize processing load on sensor nodes. The evaluation results show that the method can almost fairly distribute the load to sensor nodes.

本文言語English
ホスト出版物のタイトル2020 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2020
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781728173993
DOI
出版ステータスPublished - 2020 9月 28
イベント7th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2020 - Taoyuan, Taiwan, Province of China
継続期間: 2020 9月 282020 9月 30

出版物シリーズ

名前2020 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2020

Conference

Conference7th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2020
国/地域Taiwan, Province of China
CityTaoyuan
Period20/9/2820/9/30

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 人工知能
  • コンピュータ サイエンスの応用
  • 信号処理
  • 電子工学および電気工学
  • 器械工学

フィンガープリント

「Distributed Processing Allocation of Machine Learning in Wireless Sensor Networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル