Engine Failure Detection of Raw Mill Machine via Discrete Variational Auto-encoder

Izhar Brur Abruzi, Mohammad Iqbal, Imam Mukhlash, Alvida Mustika Rukmi, Nani Kurniati, Masaomi Kimura

研究成果: Conference contribution

抄録

We present a deep learning model to detect failure engine state by observing the discrete latent sensor behaviors. Further, we investigate the behaviors from the reconstruction loss of the model until we find its value starting to jump out (anomaly stage). As a result, this work aims to forecast the failure time of the engine as early as possible. To notice the anomaly, we formulate a piecewise function based on alpha -quantile of the loss value inside the proposed model. Unlike the existing studies focusing on the continuous latent, this work draws the discrete latent from discrete variational auto-encoder (DVAE) to predict the failure state better. For evaluation purposes, we evaluated the proposed model on a real dataset from the raw mill machine of a cement factory in Indonesia. From the experiments, we are satisfied to see the proposed model performances detecting the failure state of the raw mill machine as early as possible compared to the state-of-the-art model.

本文言語English
ホスト出版物のタイトルProceedings of 2022 International Conference on Data and Software Engineering, ICoDSE 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ59-64
ページ数6
ISBN(電子版)9798350397055
DOI
出版ステータスPublished - 2022
イベント2022 International Conference on Data and Software Engineering, ICoDSE 2022 - Bali, Indonesia
継続期間: 2022 11月 22022 11月 3

出版物シリーズ

名前Proceedings of 2022 International Conference on Data and Software Engineering, ICoDSE 2022

Conference

Conference2022 International Conference on Data and Software Engineering, ICoDSE 2022
国/地域Indonesia
CityBali
Period22/11/222/11/3

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • ソフトウェア
  • 情報システム
  • 情報システムおよび情報管理
  • 安全性、リスク、信頼性、品質管理

フィンガープリント

「Engine Failure Detection of Raw Mill Machine via Discrete Variational Auto-encoder」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル