TY - JOUR
T1 - Estradiol and corticosterone stimulate the proliferation of a GH cell line, MtT/S. Proliferation of growth hormone cells.
AU - Nogami, Haruo
AU - Hiraoka, Yoshiki
AU - Aiso, Sadakazu
N1 - Publisher Copyright:
© 2016 Elsevier Ltd.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2016/8/1
Y1 - 2016/8/1
N2 - Objectives: Estrogens are known as a potent growth-stimulator of the anterior pituitary cells such as prolactin cells and somatomammotroph cell lines, while glucocorticoids often inhibit cellular proliferation in the pituitary gland as well as in the extra-pituitary tissues. In this study, the involvement of these steroid hormones in the regulation of proliferation was examined in the MtT/S cells, secreting growth hormone (GH). Design: Effects of estrogens and glucocorticoids were examined in MtT/S cells grown in the medium containing dextran-coated charcoal treated serum. The relative cell density after culture was estimated by the Cell Titer-Glo Luminescent Cell Viability Assay System, and the proliferation rate was determined by the BrdU incorporation method. The mRNA levels were determined by real-time PCR. Results: Estradiol and the specific agonist for both estrogen receptor (ER) α and ERβ stimulated MtT/S growth at a dose dependent manner. The membrane impermeable estrogen, 17β-estradiol-bovine serum albumin conjugate also stimulated the MtT/S proliferation. The effects of all estrogens were inhibited by an estrogen receptor antagonist, ICI182780. Corticosterone stimulated the proliferation of MtT/S cells at doses lower than 10 nM without stimulating GH gene transcription, whereas it did not change the proliferation rate at 1 μM. The effects of corticosterone were inhibited by glucocorticoid receptor inhibitor, RU486, but not by the mineralocorticoid receptor antagonist, spironolactone. Both estrogens and glucocorticoids were found to stimulate the proliferation of MtT/S, increasing the mRNA expression of cyclins D1, D3, and E. Conclusions: The results suggest that estrogens and glucocorticoids may be involved in the mechanisms responsible for the proliferation of GH cells in the course of pituitary development, to maintain the population of GH cells in the adult pituitary gland, and also in the promotion of GH cell tumors.
AB - Objectives: Estrogens are known as a potent growth-stimulator of the anterior pituitary cells such as prolactin cells and somatomammotroph cell lines, while glucocorticoids often inhibit cellular proliferation in the pituitary gland as well as in the extra-pituitary tissues. In this study, the involvement of these steroid hormones in the regulation of proliferation was examined in the MtT/S cells, secreting growth hormone (GH). Design: Effects of estrogens and glucocorticoids were examined in MtT/S cells grown in the medium containing dextran-coated charcoal treated serum. The relative cell density after culture was estimated by the Cell Titer-Glo Luminescent Cell Viability Assay System, and the proliferation rate was determined by the BrdU incorporation method. The mRNA levels were determined by real-time PCR. Results: Estradiol and the specific agonist for both estrogen receptor (ER) α and ERβ stimulated MtT/S growth at a dose dependent manner. The membrane impermeable estrogen, 17β-estradiol-bovine serum albumin conjugate also stimulated the MtT/S proliferation. The effects of all estrogens were inhibited by an estrogen receptor antagonist, ICI182780. Corticosterone stimulated the proliferation of MtT/S cells at doses lower than 10 nM without stimulating GH gene transcription, whereas it did not change the proliferation rate at 1 μM. The effects of corticosterone were inhibited by glucocorticoid receptor inhibitor, RU486, but not by the mineralocorticoid receptor antagonist, spironolactone. Both estrogens and glucocorticoids were found to stimulate the proliferation of MtT/S, increasing the mRNA expression of cyclins D1, D3, and E. Conclusions: The results suggest that estrogens and glucocorticoids may be involved in the mechanisms responsible for the proliferation of GH cells in the course of pituitary development, to maintain the population of GH cells in the adult pituitary gland, and also in the promotion of GH cell tumors.
KW - Cyclin
KW - Estrogens
KW - Glucocorticoids
KW - Growth hormone cells
KW - MtT/S
UR - http://www.scopus.com/inward/record.url?scp=84962783663&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84962783663&partnerID=8YFLogxK
U2 - 10.1016/j.ghir.2016.03.006
DO - 10.1016/j.ghir.2016.03.006
M3 - Article
C2 - 27082452
AN - SCOPUS:84962783663
SN - 1096-6374
VL - 29
SP - 33
EP - 38
JO - Growth Hormone and IGF Research
JF - Growth Hormone and IGF Research
ER -