Femtosecond Laser Microfabrication of Photonic Crystals

Vygantas Mizeikis, Shigeki Matsuo, Saulius Juodkazis, Hiroaki Misawa

研究成果: Chapter

7 被引用数 (Scopus)


The evolution of modern photonic technologies depends on the possibilities of obtaining large-scale photonic crystals cheaply and efficiently. Photonic crystals [1, 2] are periodic dielectric structures which are expected to play an important role in optics and optoelectronics due to their unique capability of controlling the emission and propagation of light via photonic band gap (PBG) and stop-gap effects. A comprehensive summary of the properties of various classes of PBG materials and their potential capabilities can be found in the literature, for example, books [3-6]. According to common knowledge, the wavelengths at which PBGs or stop-gaps open are close to the period of the dielectric lattice. At the same time, the most desirable spectral region for opto-electronic devices, including those based on photonic crystals, is in the visible and near-infrared wavelength range. Given this requirement, fabrication of structures periodic in one, two or three dimensions, and comprising many lattice periods, is not a trivial task.

ホスト出版物のタイトル3D Laser Microfabrication
ホスト出版物のサブタイトルPrinciples and Applications
出版社Wiley-VCH Verlag GmbH & Co. KGaA
ISBN(印刷版)352731055X, 9783527310555
出版ステータスPublished - 2006 6月 29

ASJC Scopus subject areas

  • 工学(全般)


「Femtosecond Laser Microfabrication of Photonic Crystals」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。