Finite-size scaling of correlation ratio and generalized scheme for the probability-changing cluster algorithm

Yusuke Tomita, Yutaka Okabe

研究成果: Article査読

11 被引用数 (Scopus)

抄録

We study the finite-size scaling (FSS) property of the correlation ratio, the ratio of the correlation functions with different distances. It is shown that the correlation ratio is a good estimator to determine the critical point of the second-order transition using the FSS analysis. The correlation ratio is especially useful for the analysis of the Kosterlitz-Thouless (KT) transition. We also present a generalized scheme of the probability-changing cluster algorithm, which has been recently developed by the present authors, based on the FSS property of the correlation ratio. We investigate the two-dimensional spin- (formula presented) quantum (formula presented) model of with this generalized scheme, obtaining the precise estimate of the KT transition temperature with less numerical effort.

本文言語English
ページ(範囲)1-4
ページ数4
ジャーナルPhysical Review B - Condensed Matter and Materials Physics
66
18
DOI
出版ステータスPublished - 2002
外部発表はい

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学

フィンガープリント

「Finite-size scaling of correlation ratio and generalized scheme for the probability-changing cluster algorithm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル