FNM-based and RFCM-based fuzzy clustering for tri-relational data

研究成果: Conference contribution

抄録

In this paper, some fuzzy clustering methods are proposed for relational data which represents the dissimilarity for triples of data points. One method is based on the fuzzy nonmetric model and the other is on the relational fuzzy c-means. Each method has two options of fuzzification; the standard and the entropy-regularization. Through some numerical experiments, the feature of the proposed methods is discussed.

本文言語English
ホスト出版物のタイトル6th International Conference on Soft Computing and Intelligent Systems, and 13th International Symposium on Advanced Intelligence Systems, SCIS/ISIS 2012
ページ1982-1987
ページ数6
DOI
出版ステータスPublished - 2012 12月 1
イベント2012 Joint 6th International Conference on Soft Computing and Intelligent Systems, SCIS 2012 and 13th International Symposium on Advanced Intelligence Systems, ISIS 2012 - Kobe, Japan
継続期間: 2012 11月 202012 11月 24

出版物シリーズ

名前6th International Conference on Soft Computing and Intelligent Systems, and 13th International Symposium on Advanced Intelligence Systems, SCIS/ISIS 2012

Conference

Conference2012 Joint 6th International Conference on Soft Computing and Intelligent Systems, SCIS 2012 and 13th International Symposium on Advanced Intelligence Systems, ISIS 2012
国/地域Japan
CityKobe
Period12/11/2012/11/24

ASJC Scopus subject areas

  • 人工知能
  • ソフトウェア

フィンガープリント

「FNM-based and RFCM-based fuzzy clustering for tri-relational data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル