Fourier Ultra-Hyperfunctions as Boundary Values of Smooth Solutions of the Heat Equation

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We consider Fourier ultra-hyperfunctions and characterize them as boundary values of smooth solutions of the heat equation. Namely we show that the convolution of the heat kernel and a Fourier ultra-hyperfunction is a smooth solution of the heat equation with some exponential growth condition and, conversely that such smooth solution can be represented by the convolution of the heat kernel and a Fourier ultra-hyperfunction.

本文言語English
ページ(範囲)381-398
ページ数18
ジャーナルTokyo Journal of Mathematics
25
2
DOI
出版ステータスPublished - 2002
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Fourier Ultra-Hyperfunctions as Boundary Values of Smooth Solutions of the Heat Equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル